Олимпиадные задачи по математике для 11 класса

У Ани и Бори было по длинной полосе бумаги. На одной из них была написана буква А, на другой – Б. Каждую минуту один из них (не обязательно по очереди) приписывает справа или слева к слову на своей полосе слово с полосы другого. Докажите, что через сутки слово с Аниной полосы можно будет разрезать на 2 части и переставить их местами так, что получится то же слово, записанное в обратном порядке.

На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.

  а) Может ли площадь такого треугольника быть больше ½?

  б) Найдите наибольшую возможную площадь такого треугольника.

Пусть <i>M</i> – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит <i>M</i>.

Какое наибольшее число элементов может быть в <i>M</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка