Олимпиадные задачи по математике для 7 класса - сложность 2-5 с решениями
В ряду из 2009 гирек вес каждой гирьки составляет целое число граммов и не превышает 1 кг. Веса каждых двух соседних гирек отличаются ровно на 1 г, а общий вес всех гирь в граммах является чётным числом. Докажите, что гирьки можно разделить на две кучки, суммы весов в которых равны.
Уголком размера<i> n</i>×<i>m </i>, где<i> m,n<img src="/storage/problem-media/110080/problem_110080_img_2.gif"></i>2, называется фигура, получаемая из прямоугольника размера<i>n</i>×<i>m</i>клеток удалением прямоугольника размера (<i>n-</i>1)×(<i>m-</i>1) клеток. Два игрока по очереди делают ходы, заключающиеся в закрашивании в уголке произвольного ненулевого количества клеток, образующих прямоугольник или квадрат. Пропускать ход или красить одну клетку дважды нельзя. Проигрывает тот, после чьего хода все клетки уголка окажутся окрашенными. Кто из игроков победит при правильной игре?
Два пирата делят добычу, состоящую из двух мешков монет и алмаза, действуя по следующим правилам. Вначале первый пират забирает себе из любого мешка несколько монет и перекладывает из этого мешка в другой такое же количество монет. Затем также поступает второй пират (выбирая мешок, из которого он берет монеты, по своему усмотрению) и т.д. до тех пор, пока можно брать монеты по этим правилам. Пирату, взявшему монеты последним, достается алмаз. Кому достанется алмаз, если каждый из пиратов старается получить его? Дайте ответ в зависимости от первоначального количества монет в мешках.
В коробке лежит полный набор костей домино. Два игрока по очереди выбирают из коробки по одной кости и выкладывают их на стол, прикладывая к уже выложенной цепочке с любой из двух сторон по правилам домино. Проигрывает тот, кто не может сделать очередной ход. Кто выиграет при правильной игре?