Олимпиадные задачи по математике для 11 класса - сложность 4 с решениями
Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?
Участникам тестовой олимпиады было предложено <i>n</i> вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?
В строку в неизвестном порядке записаны все целые числа от 1 до 100. За один вопрос про любые 50 чисел можно узнать, в каком порядке относительно друг друга записаны эти 50 чисел. За какое наименьшее число вопросов наверняка можно узнать, в каком порядке записаны все 100 чисел?
В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять
а) более 75% от общего количества партий в турнире;
б) более 70%?
В клетках таблицы $15\times 15$ расставлены ненулевые числа так, что каждое из них равно произведению всех чисел, стоящих в соседних клетках (соседними называем клетки, имеющие общую сторону). Докажите, что все числа в таблице положительны.
На каждой клетке доски 5×5 лежит по одной монете, все монеты внешне одинаковы. Среди них ровно 2 монеты фальшивые, они одинакового веса и легче настоящих, которые тоже весят одинаково. Фальшивые монеты лежат в клетках, имеющих ровно одну общую вершину. Можно ли за одно взвешивание на чашечных весах без гирь гарантированно найти а) 13 настоящих монет; б) 15 настоящих монет; в) 17 настоящих монет?
Известно, что среди нескольких купюр, номиналы которых – попарно различные натуральные числа, есть ровно $N$ фальшивых. Детектор за одну проверку определяет сумму номиналов всех настоящих купюр, входящих в выбранный нами набор. Докажите, что за $N$ проверок можно найти все фальшивые купюры, если а) $N = 2$; б) $N = 3$.