Олимпиадные задачи по математике для 9 класса - сложность 4 с решениями
Даны непостоянные многочлены <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>), у которых старшие коэффициенты равны 1.
Докажите, что сумма квадратов коэффициентов многочлена <i>P</i>(<i>x</i>)<i>Q</i>(<i>x</i>) не меньше суммы квадратов свободных членов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>).
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: Кто Ваш сосед справа – умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит<i> F </i>. При каком наибольшем значении<i> F </i>всегда можно, зная эти ответы, указать на умного человека в этой компании?