Олимпиадные задачи по математике - сложность 2-3 с решениями

Города<i> A </i>,<i> B </i>,<i> C </i>и<i> D </i>расположены так, что расстояние от<i> C </i>до<i> A </i>меньше, чем расстояние от<i> D </i>до<i> A </i>, а расстояние от<i> C </i>до<i> B </i>меньше, чем расстояние от<i> D </i>до<i> B </i>. Докажите, что расстояние от города<i> C </i>до любой точки прямолинейной дороги, соединяющей города<i> A </i>и<i> B </i>, меньше, чем расстояние от<i> D </i>до этой точки.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка