Олимпиадные задачи по математике - сложность 3 с решениями

В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?

В таблице 2×<i>n</i> расставлены положительные числа так, что в каждом из <i>n</i> столбцов сумма двух чисел равна 1.

Докажите, что можно вычеркнуть по одному числу в каждом столбце так, чтобы в каждой строке сумма оставшихся чисел не превосходила  <sup><i>n</i>+1</sup>/<sub>4</sub>.

Во взводе служат три сержанта и несколько солдат. Сержанты по очереди дежурят по взводу. Командир издал такой приказ.

  1. За каждое дежурство должен быть дан хотя бы один наряд вне очереди.

  2. Никакой солдат не должен иметь более двух нарядов и получать более одного наряда за одно дежурство.

  3. Списки получивших наряды ни за какие два дежурства не должны совпадать.   4. Сержант, первым нарушивший одно из изложенных выше правил, наказывается гауптвахтой.

Сможет ли хотя бы один из сержантов, не сговариваясь с другими, давать наряды так, чтобы не попасть на гауптвахту?

Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого является число  <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/107816/problem_107816_img_2.gif"> + <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/107816/problem_107816_img_3.gif">.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка