Олимпиадные задачи по математике - сложность 4 с решениями
В параллелограмме<i> ABCD </i>на диагонали<i> AC </i>отмечена точка<i> K </i>. Окружность<i> s</i>1проходит через точку<i> K </i>и касается прямых<i> AB </i>и<i> AD </i>, причём вторая точка пересечения<i> s</i>1с диагональю<i> AC </i>лежит на отрезке<i> AK </i>. Окружность<i> s</i>2проходит через точку<i> K </i>и касается прямых<i> CB </i>и<i> CD </i>, причём вторая точка пересечения<i> s</i>2с диагональю<i> AC </i>лежит на отрезке<i> KC </i>. Докажите, что при всех положениях точки<i> K </i>на диагонали<i> AC </i>прямые, соединяющие центры окружностей<i> s&...
Даны две окружности, касающиеся внутренним образом в точке<i> N </i>. Касательная к внутренней окружности, проведённая в точке<i> K </i>, пересекает внешнюю окружность в точках<i> A </i>и<i> B </i>. Пусть<i> M </i>– середина дуги<i> AB </i>, не содержащей точку<i> N </i>. Докажите, что радиус окружности, описанной около треугольника<i> BMK </i>, не зависит от выбора точки<i> K </i>на внутренней окружности.