Олимпиадные задачи по математике для 10-11 класса
На продолжении стороны <i>BC</i> треугольника <i>ABC</i> за вершину <i>B</i> отложен отрезок <i>BB'</i>, равный стороне <i>AB</i>. Биссектрисы внешних углов при вершинах <i>B</i> и <i>C</i> пересекаются в точке <i>M</i>. Докажите, что точки <i>A, B', C</i> и <i>M</i> лежат на одной окружности.
Докажите, что следующие свойства тетраэдра равносильны:
-
все грани равновелики;
-
каждое ребро равно противоположному;
-
все грани равны;
-
центры описанной и вписанной сфер совпадают;
-
суммы углов при каждой вершине равны;
-
сумма плоских углов при каждой вершине равна 180<i><sup>o</sup> </i>;
-
развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии;
-
все грани – остроугольные треугольники с одинаковым радиусом описанной окружности;
-
ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник;
-
параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный;
11...
На сторонах <i>BC, AC</i> и <i>AB</i> остроугольного треугольника <i>ABC</i> взяты точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> так, что лучи <i>A</i><sub>1</sub><i>A, B</i><sub>1</sub><i>B</i> и <i>С</i><sub>1</sub><i>C</i> являются биссектрисами углов треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>СС</i><sub>1</sub> – высоты тре...
В остроугольный треугольник вписана окружность радиуса <i>R</i>. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен <i>Q</i>. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.
Между двумя параллельными прямыми расположили окружность радиуса 1, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной из прямых, а вершина – на другой. Известно, что треугольник и окружность имеют ровно одну общую точку и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
В треугольнике <i>ABC</i> угол <i>C</i> прямой. На катете <i>CB</i> как на диаметре во внешнюю сторону построена полуокружность, точка <i>N</i> – середина этой полуокружности. Докажите, что прямая <i>AN</i> делит пополам биссектрису <i>CL</i>.