Олимпиадные задачи по математике для 6-9 класса

Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов?

В кафе Цветочного города автомат выдаёт пончик, если ввести в него число <i>x</i>, при котором значение выражения  <i>x</i>² – 9<i>x</i> + 13  отрицательно. А если ввести число <i>x</i>, при котором отрицательно значение выражения  <i>x</i>² + <i>x</i> – 5,  то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?

В справочнике "Магия для чайников" написано:

  <i>Замените в слове ЗЕМЛЕТРЯСЕНИЕ одинаковые буквы на одинаковые цифры, а разные – на разные.

  Если полученное число окажется простым, случится настоящее землетрясение.</i>

Возможно ли таким образом устроить землетрясение?

Натуральное число <i>n</i> таково, что числа  2<i>n</i> + 1  и  3<i>n</i> + 1  являются квадратами. Может ли при этом число  5<i>n</i> + 3  быть простым?

У Пети есть 12 одинаковых разноцветных вагончиков (некоторые, возможно, одного цвета, но неизвестно, сколько вагончиков какого цвета). Петя считает, что различных 12-вагонных поездов он сможет составить больше, чем 11-вагонных. Не ошибается ли Петя? (Поезда считаются одинаковыми, если в них на одних и тех же местах находятся вагончики одного и того же цвета.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка