Олимпиадные задачи из источника «2013-2014» для 4-9 класса - сложность 4 с решениями
2013-2014
НазадНа плоскости дано <i>n</i> выпуклых попарно пересекающихся <i>k</i>-угольников. Каждый из них можно перевести в любой другой гомотетией с положительным коэффициентом. Докажите, что на плоскости найдётся точка, принадлежащая хотя бы <img align="absmiddle" src="/storage/problem-media/64776/problem_64776_img_2.gif"> из этих <i>k</i>-угольников.
В государстве <i>n</i> городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на <i>n</i> – 1 экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)