Олимпиадные задачи из источника «2002-2003» для 10-11 класса - сложность 2 с решениями
2002-2003
НазадПо каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось <i>OX</i> никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось <i>OY</i> обязательно совпадут или совпадали раньше.
Найдите все <i>x</i>, при которых уравнение <i>x</i>² + <i>y</i>² + <i>z</i>² + 2<i>xyz</i> = 1 (относительно <i>z</i>) имеет действительное решение при любом <i>y</i>.