Олимпиадные задачи из источника «Региональный этап» для 5-7 класса - сложность 3 с решениями

На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или<i> - </i>, второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?

Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.). <center> <img src="/storage/problem-media/109542/problem_109542_img_2.gif"> </center>На клетке, помеченной звездочкой, стоит<i>кентавр</i>– фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка