Олимпиадные задачи из источника «46 (2023), математика» для 2-8 класса - сложность 3-5 с решениями

У Карабаса-Барабаса есть большой участок земли в форме выпуклого $12$-угольника, в вершинах которого стоят фонари. Карабасу-Барабасу нужно поставить внутри участка некоторое конечное число фонарей, разделить его на треугольные участки с вершинами в фонарях и раздать эти участки актёрам театра. При этом каждый внутренний фонарь должен освещать не менее шести треугольных участков (фонарь светит недалеко, только на те участки, в вершине которых стоит). Какое максимальное количество треугольных участков может раздать Карабас-Барабас актёрам?

Существует ли число, которое может быть представлено в виде $\frac1n + \frac1m$, где $m$ и $n$ натуральные, не менее чем ста способами? Ответ объясните.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка