Олимпиадные задачи из источника «26 (2003), математика» для 7-8 класса - сложность 3 с решениями

Расположите на плоскости как можно больше точек так, чтобы любые три точки не лежали на одной прямой и являлись вершинами равнобедренного треугольника.

Отмечены четыре вершины квадрата. Отметьте ещё четыре точки так, чтобы на всех серединных перпендикулярах к отрезкам с концами в отмеченных точках лежало по две отмеченные точки.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка