Олимпиадные задачи из источника «весенний тур, 9-10 класс» для 6-8 класса - сложность 3-4 с решениями
весенний тур, 9-10 класс
НазадВ параллелограмме <i>ABCD</i>, не являющемся ромбом, проведена биссектриса угла <i>BAD</i>. <i>K</i> и <i>L</i> – точки её пересечения с прямыми <i>BC</i> и <i>CD</i> соответственно. Докажите, что центр окружности, проведённой через точки <i>C</i>, <i>K</i> и <i>L</i>, лежит на окружности, проведённой через точки <i>B</i>, <i>C</i> и <i>D</i>.
30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
а) четырёх вечеров недостаточно,
б) пяти вечеров также недостаточно,
в) а десяти вечеров достаточно,
г) и даже семи вечеров тоже достаточно.