Олимпиадные задачи из источника «весенний тур, 7-8 класс» - сложность 1-2 с решениями

20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.

Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

Натуральное число <i>n</i> записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то <i>n</i> делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число <i>различных</i> цифр может содержать эта запись?

Через вершины <i>A</i> и <i>B</i> треугольника <i>ABC</i> проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка