Олимпиадные задачи из источника «весенний тур, основной вариант, 7-8 класс» для 9-11 класса - сложность 2 с решениями

Рассматриваются  4(<i>N</i> – 1)  граничных клеток таблицы размером <i>N×N</i>. Нужно вписать в эти клетки последовательные  4(<i>N</i> – 1)  целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:

  а)  <i>N</i> = 3;

  б)  <i>N</i> = 4;

  в)  <i>N</i> = 5.

На уроке танцев 15 мальчиков и 15 девочек построили двумя параллельными колоннами, так что образовалось 15 пар. В каждой паре измерили разницу роста мальчика и девочки (разница берётся по абсолютной величине, то есть из большего вычитают меньшее). Максимальная разность оказалась 10 см. В другой раз перед образованием пар каждую колонну предварительно построили по росту. Докажите, что максимальная разность будет не больше 10 см.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка