Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» для 1-8 класса - сложность 4 с решениями
осенний тур, сложный вариант, 8-9 класс
НазадДаны две строго возрастающие последовательности положительных чисел, в которых каждый член, начиная с третьего, равен сумме двух предыдущих. Известно, что каждая последовательность содержит хотя бы одно число, которого нет в другой последовательности. Какое наибольшее количество общих чисел может быть у этих последовательностей? <b>Замечание к условию.</b>Предполагается, что обе последовательности бесконечны, иначе совпадений, очевидно, может быть сколько угодно (можно взять первые $n$ членов последовательности Фибоначчи 1, 2, 3, 5, 8, 13, ... как первую последовательность, и члены со второго по $(n+1)$-й — как вторую).