Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 7-8 класса - сложность 1-4 с решениями
весенний тур, сложный вариант, 10-11 класс
НазадДан многочлен степени $n$ > 0 с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что у этого многочлена не может быть никаких других коэффициентов, кроме 1, –1 и –2.
В каждой клетке таблицы $N\times N$ записано число. Назовём клетку $C$<i>хорошей</i>, если в какой-то из клеток, соседних с $C$ по стороне, стоит число на 1 больше, чем в $C$, а в какой-то другой из клеток, соседних с $C$ по стороне, стоит число на 3 больше, чем в $C$. Каково наибольшее возможное количество хороших клеток?
Найдите все пары натуральных чисел $m$ и $n$, для которых $m!! = n!$. (Двойной факториал $m!!$ – это произведение всех натуральных чисел, не превосходящих $m$ и имеющих ту же чётность, что $m$. Например, 5!! = 15, 6!! = 48).
Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну – из шести нот, ..., одну – из 30 нот. Если в какой-то момент последние сыгранные ноты образуют одну из запретных мелодий, дудочка перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии Кощей ни объявил запретными?