Олимпиадные задачи из источника «осенний тур, базовый вариант, 8-9 класс» для 2-9 класса - сложность 3 с решениями

Петя и Вася нашли 100 кубиков одинакового размера, 50 из них были белого цвета и 50 – чёрного. Они придумали игру. Назовём башенкой один или несколько кубиков, стоящих друг на друге. В начале игры все кубики лежат по одному, то есть имеется 100 башенок. За один ход игрок должен одну из башенок поставить на другую (переворачивать башенки нельзя), при этом в новой башенке не должно быть подряд двух одинаковых по цвету кубиков. Ходят по очереди, начинает Петя. Кто не может сделать ход – проиграл. Кто может обеспечить себе победу, как бы ни играл его соперник?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка