Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 1-9 класса - сложность 2-4 с решениями
весенний тур, сложный вариант, 10-11 класс
НазадПравильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.
Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую)<i>хорошей</i>, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число. Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.
Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.