Олимпиадные задачи из источника «9-10 класс» для 2-11 класса - сложность 4-5 с решениями
9-10 класс
Назад<i>k</i> вершин правильного <i>n</i>-угольника закрашены. Закраска называется <i>почти равномерной</i>, если для любого натурального <i>m</i> верно следующее условие: если <i>M</i><sub>1</sub> – множество <i>m</i> расположенных подряд вершин и <i>M</i><sub>2</sub> – другое такое множество, то количество закрашенных вершин в <i>M</i><sub>1</sub> отличается от количества закрашенных вершин в <i>M</i><sub>2</sub> не больше чем на 1. Доказать, что для любых натуральных <i>n</i> и <i>k</i> ≤ <i>n</i> почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множест...
а) На бесконечном листе клетчатой бумаги двое играют в такую игру: первый окрашивает произвольную клетку в красный цвет; второй окрашивает произвольную неокрашенную клетку в синий цвет; затем первый окрашивает произвольную неокрашенную клетку в красный цвет, а второй еще одну неокрашенную клетку в синий цвет и т. д. Первый стремится к тому, чтобы центры каких-то четырёх красных клеток образовали квадрат со сторонами, параллельными линиям сетки, а второй хочет ему помешать. Может ли выиграть первый игрок?
б) Каков будет ответ на этот вопрос, если второй игрок закрашивает синим цветом сразу по две клетки?