Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 классы» для 6-9 класса - сложность 3 с решениями
весенний тур, сложный вариант, 10-11 классы
НазадЧетырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.
Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что
а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;
б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих: $a - b, b - a$ или $a + b$. Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно $20a - 18b$.
В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?
Существуют ли такие 2018 положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных 2018 дробей?