Олимпиадные задачи из источника «весенний тур, сложный вариант, 8-9 класс» - сложность 3-5 с решениями

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём  <i>n</i> ≠ <i>m</i>.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

Пусть <i>I</i> – центр вписанной окружности прямоугольного треугольника <i>ABC</i>, касающейся катетов <i>AC</i> и <i>BC</i> в точках <i>B</i><sub>0</sub> и <i>A</i><sub>0</sub> соответственно. Перпендикуляр, опущенный из <i>A</i><sub>0</sub> на прямую <i>AI</i>, и перпендикуляр, опущенный из <i>B</i><sub>0</sub> на прямую <i>BI</i>, пересекаются в точке <i>P</i>. Докажите, что прямые <i>CP</i> и <i>AB</i> перпендикулярны.

Будем называть точку плоскости <i>узлом</i>, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка