Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» для 8 класса - сложность 3 с решениями
осенний тур, сложный вариант, 8-9 класс
НазадНа кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.
Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.
В остроугольном треугольнике <i>ABC</i> на высоте <i>BH</i> выбрана произвольная точка <i>P</i>. Точки <i>A'</i> и <i>C'</i> – середины сторон <i>BC</i> и <i>AB</i> соответственно. Перпендикуляр, опущенный из <i>A'</i> на <i>CP</i>, пересекается с перпендикуляром, опущенным из <i>C'</i> на <i>AP</i>, в точке <i>K</i>. Докажите, что точка <i>K</i> равноудалена от точек <i>A</i> и <i>C</i>.