Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 8-9 класс» для 5-9 класса - сложность 2 с решениями

Отрезок единичной длины разбили на 11 отрезков, длина каждого из которых не превосходит <i>а</i>.

При каких значениях <i>а</i> можно утверждать, что из любых трёх получившихся отрезков можно составить треугольник?

В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?

Дан треугольник <i>ABC</i>. Точки <i>M</i><sub>1</sub>, <i>M</i><sub>2</sub>, <i>M</i><sub>3</sub> – середины сторон <i>AB, BC</i> и <i>AC</i>, a точки <i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, <i>H</i><sub>3</sub> – основания высот, лежащие на тех же сторонах.

Докажите, что из отрезков <i>H</i><sub>1</sub><i>M</i><sub>2</sub>, <i>H</i><sub>2</sub><i>M</i><sub>3</sub> и <i>H</i><sub>3</sub><i>M</i><sub>1</sub> можно построить треугольник.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка