Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 8-9 класс» для 6-10 класса - сложность 2 с решениями
весенний тур, тренировочный вариант, 8-9 класс
НазадСтороны <i>AB, BC, CD</i> и <i>DA</i> четырёхугольника <i>ABCD</i> касаются некоторой окружности в точках <i>K, L, M</i> и <i>N</i> соответственно, <i>S</i> – точка пересечения отрезков <i>KM</i> и <i>LN</i>. Известно, что вокруг четырёхугольника <i>SKBL</i> можно описать окружность. Докажите, что вокруг четырёхугольника <i>SNDM</i> также можно описать окружность.
Для натуральных чисел <i>x</i> и <i>y</i> число <i>x</i>² + <i>xy + y</i>² в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.
Можно ли разрезать какой-нибудь треугольник на четыре выпуклые фигуры: треугольник, четырёхугольник, пятиугольник и шестиугольник?
Имеется много одинаковых прямоугольных картонок размером <i>a</i>×<i>b</i> см, где <i>a</i> и <i>b</i> – целые числа, причём <i>a < b</i>. Известно, что из таких картонок можно сложить и прямоугольник 49×51 см, и прямоугольник 99×101 см. Можно ли по этим данным однозначно определить <i>a</i> и <i>b</i>?