Олимпиадные задачи из источника «весенний тур, основной вариант, 8-9 класс» для 8 класса - сложность 2 с решениями

Пусть <i>a, b, c</i> – стороны треугольника. Докажите неравенство  <i>a</i>³ + <i>b</i>³ + 3<i>abc > c</i>³.

На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка