Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 8-9 класс»

На гипотенузе <i>AB</i> прямоугольного треугольника <i>ABC</i> во внешнюю сторону построен квадрат <i>ABDE</i>. Известно, что  <i>AC</i> = 1,   <i>BC</i> = 3.

В каком отношении делит сторону <i>DE</i> биссектриса угла <i>C</i>?

Квадрат разрезали 18 прямыми, из которых девять параллельны одной стороне квадрата, а девять – другой, на 100 прямоугольников. Оказалось, что ровно девять из них – квадраты. Докажите, что среди этих квадратов найдутся два равных между собой.

На плоскости нарисован чёрный равносторонний треугольник. Имеется девять треугольных плиток того же размера и той же формы. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного треугольника (хотя бы одну точку внутри него). Как это сделать?

На доске написано несколько целых положительных чисел: <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... , <i>a<sub>n</sub></i>. Пишем на другой доске следующие числа: <i>b</i><sub>0</sub> – сколько всего чисел на первой доске, <i>b</i><sub>1</sub> – сколько там чисел, больших единицы, <i>b</i><sub>2</sub> – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа <i>c</i><sub>0</sub>, <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub>, ... , построенные по ч...

Отец и сын катаются на коньках по кругу. Время от времени отец обгоняет сына. После того, как сын переменил направление своего движения на противоположное, они стали встречаться в 5 раз чаще. Во сколько раз отец бегает быстрее сына?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка