Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 10-11 класс» для 9-11 класса - сложность 3-4 с решениями

а) В треугольнике <i>ABC</i> угол <i>A</i> больше угла <i>B</i>. Докажите, что <i>BC</i> > ½ <i>AB</i>.

б) В выпуклом четырёхугольнике <i>ABCD</i> угол <i>A</i> больше угла <i>C</i>, а угол <i>D</i> больше угла <i>B</i>. Докажите, что <i>BC</i> > ½ <i>AD</i>.

Функция  <i>f</i>(<i>x</i>) на отрезке [<i>a, b</i>] равна максимуму из нескольких функций вида <i>y = C</i>·10<sup>–|<i>x–d</i>|</sup> (с различными <i>d</i> и <i>C</i>, причём все <i>C</i> положительны). Дано, что

<i>f</i>(<i>a</i>) = <i>f</i>(<i>b</i>). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка