Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» для 10 класса - сложность 2-4 с решениями

Существует ли выпуклый многогранник, одно из сечений которого – треугольник (сечение не проходит через вершины), и в каждой вершине сходятся

  а) не меньше пяти рёбер,

  б) ровно пять рёбер?

Хозяйка испекла для гостей пирог. За столом может оказаться либо <i>p</i> человек, либо <i>q</i> (<i>p</i> и <i>q</i> взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?

Докажите, что при любом натуральном <i>n</i> найдётся ненулевой многочлен <i>P</i>(<i>x</i>) с коэффициентами, равными 0, –1, 1, степени не больше 2<sup><i>n</i></sup>, который делится на

(<i>x</i> – 1)<sup><i>n</i></sup>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка