Олимпиадные задачи из источника «XVII Олимпиада по геометрии имени И.Ф. Шарыгина (2021 г.)» для 11 класса - сложность 3 с решениями

Секущая пересекает первую окружность в точках $A_1, B_1$, а вторую – в точках $A_2, B_2$. Вторая секущая пересекает первую окружность в точках $C_1, D_1$, а вторую – в точках $C_2, D_2$. Докажите, что точки $A_1C_1\cap B_2D_2$, $A_1C_1\cap A_2C_2$, $A_2C_2\cap B_1D_1$, $B_2D_2\cap B_1D_1$ лежат на одной окружности, соосной с данными двумя.

Может ли треугольник быть разверткой четырехугольной пирамиды?

Биссектриса угла $A$ треугольника $ABC$ ($AB>AC$) пересекает описанную окружность в точке $P$. Перпендикуляр к $AC$ в точке $C$ пересекает биссектрису угла $A$ в точке $K$. Окружность с центром в точке $P$ и радиусом $PK$ пересекает меньшую дугу $PA$ описанной окружности в точке $D$. Докажите, что в четырехугольник $ABDC$ можно вписать окружность.

В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.

Четырехугольник $ABCD$ описан около окружности $\omega$ с центром $I$. Прямые $AC$ и $BD$ пересекаются в точке $P$, $AB$ и $CD$ – в точке $E$, $AD$ и $BC$ – в точке $F$. Точка $K$ на описанной окружности треугольника $EIF$ такова, что $\angle IKP=90^{\circ}$. Луч $PK$ пересекает $\omega$ в точке $Q$. Докажите, что описанная окружность треугольника $EQF$ касается $\omega$.

На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?

Диагонали трапеции $ABCD$ ($BC\parallel AD$) пересекаются в точке $O$. На отрезках $BC$ и $AD$ выбраны соответственно точки $M$ и $N$. К окружности $AMC$ проведена касательная из $C$ до пересечения с лучом $NB$ в точке $P$; к окружности $BND$ из $D$ проведена касательная до пересечения с лучом $MA$ в точке $R$. Докажите, что $\angle BOP=\angle AOR$.

Назовем расстоянием между треугольниками $A_1A_2A_3$ и $B_1B_2B_3$ наименьшее из расстояний $A_iB_j$. Можно ли так расположить на плоскости пять треугольников, чтобы расстояние между любыми двумя из них равнялось сумме радиусов их описанных окружностей?

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.

Существует ли выпуклый многоугольник, у которого длины всех сторон равны, а любые три вершины образуют тупоугольный треугольник?

В пространстве даны шесть точек общего положения. Для каждых двух из них покрасим красным точки пересечения (если они есть) отрезка между ними и поверхности тетраэдра с вершинами в четырех оставшихся точках. Докажите, что число красных точек четно.

Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.

Точка $P$ лежит внутри выпуклого четырехугольника $ABCD$. Общие внутренние касательные к вписанным окружностям треугольников $PAB$ и $PCD$ пересекаются в точке $Q$, а общие внутренние касательные к вписанным окружностям треугольников $PBC$ и $PAD$ – в точке $R$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.

Дан остроугольный треугольник $ABC$. Точки $A_0$ и $C_0$ – середины меньших дуг соответственно $BC$ и $AB$ его описанной окружности. Окружность, проходящая через $A_0$ и $C_0$, пересекает прямые $AB$ и $BC$ в точках $P$ и $S$, $Q$ и $R$ соответственно (все эти точки различны). Известно, что $PQ\parallel AC$. Докажите, что $A_0P+C_0S=C_0Q+A_0R$

Дан вписанный пятиугольник $APBCQ$. Точка $M$ внутри треугольника $ABC$ такова, что $\angle MAB=\angle MCA$, $\angle MAC=\angle MBA$ и $\angle PMB=\angle QMC=90^{\circ}$. Докажите, что прямые $AM$, $BP$ и $CQ$ пересекаются в одной точке.

В треугольнике $ABC$ точка $M$ – середина дуги $BAC$ описанной окружности $\Omega$, $I$ – центр вписанной окружности, $N$ – вторая точка пересечения прямой $AI$ с $\Omega$, $E$ – точка касания стороны $BC$ с соответствующей вневписанной окружностью, $Q$ – вторая точка пересечения окружности $IMN$ с прямой, проходящей через $I$ и параллельной $BC$. Докажите, что прямые $AE$ и $NQ$ пересекаются на $\Omega$.

Во вписанном пятиугольнике отметили середины четырех сторон, после чего сам пятиугольник стерли. Восстановите его.

В равнобедренном треугольнике $ABC$ ($AB=BC$) проведен луч $l$ из вершины $B$. На луче внутри треугольника взяты точки $P$ и $Q$ так, что $\angle BAP=\angle QCA$. Докажите, что $\angle PAQ=\angle PCQ$.

В треугольник $ABC$ вписана окружность с центром $I$, касающаяся сторон $CA$, $AB$ в точках $E$, $F$ соответственно. Точки $M$, $N$ на прямой $EF$ таковы, что $CM=CE$ и $BN=BF$. Прямые $BM$ и $CN$ пересекаются в точке $P$. Докажите, что прямая $PI$ делит пополам отрезок $MN$.

В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка