Олимпиадные задачи из источника «10 класс» для 1-10 класса - сложность 4-5 с решениями

На аттракционе «Весёлая парковка» у машинки только 2 положения руля: «вправо» и «совсем вправо». В зависимости от положения руля, машинка едет по дуге радиуса $r_1$ или $r_2$. Машинка выехала из точки $A$ на север и проехала расстояние $l$, повернув при этом на угол $\alpha<2\pi$. Где она могла оказаться (найдите ГМТ – концов возможных траекторий)?

В прямоугольном треугольнике $ABC$ $I$ – центр вписанной окружности, $M$ – середина гипотенузы $AB$. Касательная к описанной окружности треугольника $ABC$ в точке $C$ пересекает прямую, проходящую через $I$ и параллельную $AB$, в точке $P$. Точка $H$ – ортоцентр треугольника $PAB$. Докажите, что точка пересечения прямых $CH$ и $PM$ лежит на вписанной окружности треугольника $ABC$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка