Олимпиадные задачи из источника «Заочный тур» - сложность 3 с решениями
Заочный тур
НазадКристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.<img src="/storage/problem-media/66665/problem_66665_img_2.png">На любых двух соседних гранях штриховка перпендикулярна. Существует ли выпуклый многогранник с числом граней, не равным $6$, грани которого можно заштриховать аналогичным образом?
Имеется треугольник $ABC$ и линейка, на которой отмечены отрезки, равные сторонам треугольника. Постройте этой линейкой ортоцентр треугольника, образованного точками касания вписанной в треугольник $ABC$ окружности.
В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.
Постройте треугольник по точке Нагеля, вершине $B$ и основанию высоты, проведенной из этой вершины.
Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.