Олимпиадные задачи из источника «XII Олимпиада по геометрии имени И.Ф. Шарыгина (2016 г.)» для 10-11 класса - сложность 2 с решениями
XII Олимпиада по геометрии имени И.Ф. Шарыгина (2016 г.)
НазадСуществует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (<i>Диагональю</i> многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)
Прямая, параллельная стороне <i>BC</i> треугольника <i>ABC</i>, пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно. Внутри треугольника <i>APQ</i> взята точка <i>M</i>. Отрезки <i>MB</i> и <i>MC</i> пересекают отрезок <i>PQ</i> в точках <i>E</i> и <i>F</i> соответственно. Пусть <i>N</i> – вторая точка пересечения описанных окружностей ω<sub>1</sub> и ω<sub>2</sub> треугольников <i>PMF</i> и <i>QME</i>. Докажите, что точки <i>A, M</i> и <i>N</i> лежат на одной прямой.
Продолжения боковых сторон трапеции <i>ABCD</i> пересекаются в точке <i>P</i>, а её диагонали – в точке <i>Q</i>. Точка <i>M</i> на меньшем основании <i>BC</i> такова, что <i>AM = MD</i>. Докажите, что ∠<i>PMB</i> = ∠<i>QMB</i>.
Центр окружности ω<sub>2</sub> лежит на окружности ω<sub>1</sub>. Из точки <i>X</i> окружности ω<sub>1</sub> проведены касательные XP и XQ к окружности ω<sub>2</sub> (<i>P</i> и <i>Q</i> – точки касания), которые повторно пересекают ω<sub>1</sub> в точках <i>R</i> и <i>S</i>. Докажите, что прямая <i>PQ</i> проходит через середину отрезка <i>RS</i>.
Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Касательная, проведённая к описанной окружности треугольника <i>BOC</i> в точке <i>O</i>, пересекает луч <i>CB</i> в точке <i>F</i>. Описанная окружность треугольника <i>FOD</i> повторно пересекает прямую <i>BC</i> в точке <i>G</i>. Докажите, что <i>AG = AB</i>.