Олимпиадные задачи из источника «VII Олимпиада по геометрии имени И.Ф. Шарыгина (2011 г.)» для 8-9 класса - сложность 4 с решениями

Четырёхугольник <i>ABCD</i> описан около окружности с центром <i>I</i>. Точки <i>M</i> и <i>N</i> – середины диагоналей <i>AC</i> и <i>BD</i>.

Докажите, что четырёхугольник <i>ABCD</i> – вписанный тогда и только тогда, когда  <i>IM</i> : <i>AC = IN</i> : <i>BD</i>.

Выпуклый <i>n</i>-угольник <i>P</i>, где  <i>n</i> > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.

Каковы возможные значения <i>n</i>, если <i>n</i>-угольник описанный?

Четырёхугольник <i>ABCD</i> вписан в окружность с центром <i>O</i>. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром <i>I</i>, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром <i>J</i>. Докажите, что <i>O</i> – середина отрезка <i>IJ</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка