Олимпиадные задачи из источника «11 класс» для 11 класса - сложность 2-5 с решениями

Сфера, вписанная в тетраэдр <i>ABCD</i>, касается его граней в точках <i>A', B', C', D'</i>. Отрезки <i>AA'</i> и <i>BB'</i> пересекаются, и точка их пересечения лежит на вписанной сфере. Доказать, что отрезки <i>CC'</i> и <i>DD'</i> тоже пересекаются на вписанной сфере.

Дан выпуклый четырехугольник <i>ABCD</i>. Прямые <i>BC</i> и <i>AD</i> пересекаются в точке <i>O</i>, причём <i>B</i> лежит на отрезке <i>O</i> и <i>A</i> на отрезке <i>OD. I</i> – центр вписанной окружности треугольника <i>OAB, J</i> – центр вневписанной окружности треугольника <i>OCD</i>, касающейся стороны <i>CD</i> и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка <i>IJ</i> на прямые <i>BC</i> и <i>AD</i>, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках <i>X</i> и <i>Y</i>. Доказать, что отрезок <i>XY</i> делит периметр четыр...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка