Олимпиадные задачи из источника «10-11 класс» для 5-9 класса - сложность 3 с решениями
10-11 класс
НазадВписанная окружность неравнобедренного треугольника <i>ABC</i> касается сторон <i>AB, BC</i> и <i>ABC</i> в точках <i>C</i><sub>1</sub>, <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub> соответственно. Описанная окружность треугольника <i>A</i><sub>1</sub><i>BC</i><sub>1</sub> пересекает прямые <i>B</i><sub>1</sub><i>A</i><sub>1</sub> и <i>B</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A</i><sub>0</sub> и <i>C</i><sub>0</sub> соответственно. Докажите, что ортоцентр <i>H</i> треугольник...
На плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности.
Пользуясь только линейкой без делений и проведя не больше семи линий, постройте диаметр описанной окружности.