Олимпиадные задачи из источника «16 (2018 год)» для 1-5 класса - сложность 2-3 с решениями

Есть доска размером 7 × 12 клеток и кубик, грань которого равна клетке. Одна грань кубика окрашена невысыхающей краской. Кубик можно поставить в некоторую клетку доски и перекатывать через ребро на соседнюю грань. Ставить кубик дважды на одну и ту же клетку нельзя. Какое наибольшее количество клеток сможет посетить кубик, не испачкав доску краской?

В комнате стоят 20 стульев двух цветов: синего и красного. На каждый из стульев сел либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Каждый из сидящих заявил, что он сидит на синем стуле. Затем они как-то пересели, после чего половина из сидящих сказали, что сидят на синих стульях, а остальные сказали, что сидят на красных. Сколько рыцарей теперь сидит на красных стульях?

Лист бумаги имеет форму круга. Можно ли провести на нем пять отрезков, каждый из которых соединяет две точки на границе листа так, чтобы среди частей, на которые эти отрезки делят лист, нашлись пятиугольник и два четырехугольника?

Квадрат 4 × 4 называется <i>магическим</i>, если в его клетках встречаются все числа от 1 до 16, а суммы чисел в столбцах, строках и двух диагоналях равны между собой. Шестиклассник Сеня начал составлять магический квадрат и поставил в какую-то клетку число 1. Его младший брат Лёня решил ему помочь и поставил числа 2 и 3 в клетки, соседние по стороне с числом 1. Сможет ли Сеня после такой помощи составить магический квадрат?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка