Олимпиадные задачи из источника «10 класс» для 4-9 класса - сложность 2 с решениями
10 класс
НазадВ клуб любителей гиперграфов в начале года записались $n$ попарно незнакомых школьников. За год клуб провёл $100$ заседаний, причём каждое заседание посетил хотя бы один школьник. Два школьника знакомились, если было хотя бы одно заседание, которое они оба посетили. В конце года оказалось, что количество знакомых у каждого школьника не меньше, чем количество заседаний, которые он посетил. Найдите минимальное значение $n$, при котором такое могло случиться.
Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника.
Петя и Вася играют на отрезке $[0; 1]$, в котором отмечены точки $0$ и $1$. Игроки ходят по очереди, начинает Петя. Каждый ход игрок отмечает ранее не отмеченную точку отрезка. Если после хода очередного игрока нашлись три последовательных отрезка между соседними отмеченными точками, из которых можно сложить треугольник, то сделавший такой ход игрок объявляется победителем, и игра заканчивается. Получится ли у Пети гарантированно победить?