Олимпиадные задачи из источника «11 класс» для 8 класса - сложность 2-3 с решениями
11 класс
НазадЧерез центр <i>O</i> вписанной в треугольник <i>ABC</i> окружности проведена прямая, перпендикулярная прямой <i>AO</i> и пересекающая прямую <i>BC</i> в точке <i>M</i>.
Из точки <i>O</i> на прямую <i>AM</i> опущен перпендикуляр <i>OD</i>. Докажите, что точки <i>A, B, C</i> и <i>D</i> лежат на одной окружности.
На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки?
Найдите наименьшее натуральное<i>n</i>, для которого число<i>n<sup>n</sup></i>не является делителем числа 2008!.