Олимпиадные задачи из источника «8 класс» для 6-7 класса - сложность 1-2 с решениями
8 класс
НазадПо кругу расставлены 2005 натуральных чисел.
Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.
Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?
Найти хотя бы одно целочисленное решение уравнения <i>a</i>²<i>b</i>² + <i>a</i>² + <i>b</i>² + 1 = 2005.