Олимпиадные задачи из источника «8 класс» для 6-7 класса - сложность 2 с решениями
8 класс
НазадНекоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>200</sub>написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>100</sub>содержатся все натуральные числа от 1 до 100 включительно.
Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?
Найдутся ли натуральные числа <i>x, y</i> и <i>z</i>, удовлетворяющие условию 28<i>x</i> + 30<i>y</i> + 31<i>z</i> = 365?