Олимпиадные задачи из источника «11 класс» для 9 класса - сложность 3 с решениями
11 класс
НазадВ неравнобедренном треугольнике<i> ABC </i>проведены медианы<i> AK </i>и<i> BL </i>. Углы<i> BAK </i>и<i> CBL </i>равны30<i><sup>o</sup> </i>. Найдите углы треугольника<i> ABC </i>.
Решите в натуральных числах уравнение 3<sup><i>x</i></sup> + 4<sup><i>y</i></sup> = 5<sup><i>z</i></sup>.
Числа <i>x, y, z</i> удовлетворяют равенству <i>x + y + z</i> – 2(<i>xy + yz + xz</i>) + 4<i>xyz</i> = ½. Докажите, что хотя бы одно из них равно ½.