Олимпиадные задачи из источника «1996 год» для 11 класса - сложность 2-3 с решениями
В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого является число <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/107816/problem_107816_img_2.gif"> + <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/107816/problem_107816_img_3.gif">.
Докажите, что для любого многочлена <i>P</i>(<i>x</i>) степени <i>n</i> с натуральными коэффициентами найдется такое целое число <i>k</i>, что числа <i>P</i>(<i>k</i>), <i>P</i>(<i>k</i> + 1), ...,
<i>P</i>(<i>k</i> + 1996) будут составными, если
а) <i>n</i> = 1;
б) <i>n</i> – произвольное натуральное число.