Олимпиадные задачи из источника «10 класс, 2 тур» для 11 класса - сложность 2 с решениями

Последовательность натуральных чисел {<i>x<sub>n</sub></i>} строится по следующему правилу:  <i>x</i><sub>1</sub> = 2,  ...,  <i>x<sub>n</sub></i> = [1,5<i>x</i><sub><i>n</i>–1</sub>].

Доказать, что последовательность  <i>y<sub>n</sub></i> = (–1)<i><sup>x<sub>n</sub></sup></i>  непериодическая.

Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка