Олимпиадные задачи из источника «9 класс, 2 тур» для 8 класса - сложность 2-3 с решениями
9 класс, 2 тур
НазадИмеется несколько гирь, масса каждой из которых равна целому числу. Известно, что их можно разбить на <i>k</i> равных по массе групп.
Доказать, что не менее чем <i>k</i> способами можно убрать одну гирю так, чтобы оставшиеся гири нельзя было разбить на <i>k</i> равных по массе групп.
Доказать, что в произвольном выпуклом 2<i>n</i>-угольнике найдётся диагональ, не параллельная ни одной из его сторон.
Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число $1$, $2$, $3$, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?