Олимпиадные задачи из источника «1973 год» - сложность 4 с решениями
На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.
Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются<i>похожими</i>, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?
Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника.
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно: а) 0,5; б) 0,49; в) 0,34; г) ⅓. Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером?