Олимпиадные задачи из источника «10 класс, 2 тур» для 4-11 класса - сложность 3 с решениями
10 класс, 2 тур
НазадУ трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.
Дано число <i>A</i> = <img width="16" height="44" align="MIDDLE" border="0" src="/storage/problem-media/79263/problem_79263_img_2.gif"><img width="66" height="41" align="MIDDLE" border="0" src="/storage/problem-media/79263/problem_79263_img_3.gif"><img width="28" height="46" align="MIDDLE" border="0" src="/storage/problem-media/79263/problem_79263_img_4.gif">, где <i>n</i> и <i>m</i> – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное <i>k</i>, что <i>A</i> = <img width="93" height="58" align="MIDDLE" b...