Олимпиадные задачи из источника «8 класс, 1 тур» для 10 класса - сложность 1-5 с решениями

12 теннисистов участвовали в турнире. Известно, что каждые два теннисиста сыграли между собой ровно один раз и не было ни одного теннисиста, проигравшего все встречи. Доказать, что найдутся такие теннисисты <i>A, B, C</i>, что <i>A</i> выиграл у <i>B, B</i> у <i>C, C</i> у <i>A</i>. (В теннисе ничьих не бывает.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка